

CERTIFICATE OF ANALYSIS

REPORTED TO	Black Mountain Irrigation District 285 Gray Avenue KELOWNA, BC_V1X 1W8		
ATTENTION	Robert Hrasko	WORK ORDER	22A0768
PO NUMBER PROJECT PROJECT INFO	Drinking Water/ Bacteria	RECEIVED / TEMP REPORTED COC NUMBER	2022-01-10 13:28 / 9.1°C 2022-01-17 13:31 No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

We've Got Chemistry

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too. It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

32

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre the for technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at bwhitehead@caro.ca

Authorized By:

Brent Whitehead Client Service Team Lead

I what had

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7 | #108 4475 Wayburne Drive Burnaby, BC V5G 4X4

	Black Mountain Irrigation Drinking Water/ Bacteria			WORK ORDER REPORTED		22A0768 2022-01-17 13:31	
Analyte		Result	Guideline	RL	Units	Analyzed	Qualifi
3ooster #1 (22A076	68-01) Matrix: Water \$	Sampled: 2022-01	-10 08:35				
Microbiological Para	meters						
Coliforms, Total		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
E. coli		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
	.0768-02) Matrix: Wate	er Sampled: 2022	2-01-10 08:59				
General Parameters				1.0	ma/l	2022-01-11	
General Parameters Alkalinity, Total (as C	CaCO3)	er Sampled: 2022 45.5 < 1.0	2-01-10 08:59 N/A		mg/L mg/L	2022-01-11 2022-01-11	
General Parameters	CaCO3) halein (as CaCO3)	45.5	N/A	1.0	mg/L mg/L mg/L		
General Parameters Alkalinity, Total (as C Alkalinity, Phenolpht	CaCO3) halein (as CaCO3) te (as CaCO3)	45.5 < 1.0	N/A N/A	1.0 1.0	mg/L	2022-01-11	
General Parameters Alkalinity, Total (as C Alkalinity, Phenolpht Alkalinity, Bicarbona	CaCO3) halein (as CaCO3) te (as CaCO3) e (as CaCO3)	45.5 < 1.0 45.5	N/A N/A N/A	1.0 1.0 1.0	mg/L mg/L	2022-01-11 2022-01-11	
General Parameters Alkalinity, Total (as C Alkalinity, Phenolpht Alkalinity, Bicarbonat Alkalinity, Carbonate	CaCO3) halein (as CaCO3) te (as CaCO3) e (as CaCO3)	45.5 < 1.0 45.5 < 1.0	N/A N/A N/A N/A	1.0 1.0 1.0 1.0	mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11	HT1
General Parameters Alkalinity, Total (as C Alkalinity, Phenolphtl Alkalinity, Bicarbonat Alkalinity, Carbonate Alkalinity, Hydroxide	CaCO3) halein (as CaCO3) te (as CaCO3) e (as CaCO3)	45.5 < 1.0 45.5 < 1.0 < 1.0 < 1.0	N/A N/A N/A N/A N/A	1.0 1.0 1.0 1.0 5.0	mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11	HT1
General Parameters Alkalinity, Total (as C Alkalinity, Phenolphtl Alkalinity, Bicarbonat Alkalinity, Carbonate Alkalinity, Hydroxide Colour, True	CaCO3) halein (as CaCO3) te (as CaCO3) e (as CaCO3)	45.5 < 1.0 45.5 < 1.0 < 1.0 < 5.0	N/A N/A N/A N/A N/A AO ≤ 15	1.0 1.0 1.0 5.0 2.0	mg/L mg/L mg/L mg/L CU	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-14	HT1 HT2
General Parameters Alkalinity, Total (as C Alkalinity, Phenolpht Alkalinity, Bicarbonat Alkalinity, Carbonate Alkalinity, Hydroxide Colour, True Conductivity (EC)	CaCO3) halein (as CaCO3) te (as CaCO3) e (as CaCO3)	45.5 < 1.0	N/A N/A N/A N/A N/A AO ≤ 15 N/A	1.0 1.0 1.0 5.0 2.0 0.10	mg/L mg/L mg/L cU μS/cm	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-14 2022-01-11	

Well #4 (22A0768-03) | Matrix: Water | Sampled: 2022-01-10 13:02

Anions						
Chloride	12.3	AO ≤ 250	0.10	mg/L	2022-01-11	
Fluoride	0.10	MAC = 1.5	0.10	mg/L	2022-01-11	
Nitrate (as N)	3.17	MAC = 10	0.010	mg/L	2022-01-11	
Nitrite (as N)	< 0.010	MAC = 1	0.010	mg/L	2022-01-11	
Sulfate	24.9	AO ≤ 500	1.0	mg/L	2022-01-11	
Calculated Parameters						
Hardness, Total (as CaCO3)	239	None Required	0.500	mg/L	N/A	
Langelier Index	0.2	N/A	-5.0		2022-01-17	
Solids, Total Dissolved	270	AO ≤ 500	1.00	mg/L	N/A	
General Parameters						
Alkalinity, Total (as CaCO3)	195	N/A	1.0	mg/L	2022-01-11	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A	1.0	mg/L	2022-01-11	
Alkalinity, Bicarbonate (as CaCO3)	195	N/A	1.0	mg/L	2022-01-11	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A	1.0	mg/L	2022-01-11	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A	1.0	mg/L	2022-01-11	
Colour, True	< 5.0	AO ≤ 15	5.0	CU	2022-01-14	HT1
Conductivity (EC)	488	N/A	2.0	µS/cm	2022-01-11	
Cyanide, Total	< 0.0020	MAC = 0.2	0.0020	mg/L	2022-01-12	
рН	7.48	7.0-10.5	0.10	pH units	2022-01-11	HT2
Temperature, at pH	23.0	N/A		°C	2022-01-11	HT2
Turbidity	< 0.10	OG < 1	0.10	NTU	2022-01-13	

				part of the second s			
REPORTED TO PROJECT	Black Mountain Irrigation D Drinking Water/ Bacteria	istrict			WORK ORDER REPORTED	22A0768 2022-01-1	7 13:31
Analyte		Result	Guideline	RL	Units	Analyzed	Qualifie
Nell #4 (22A0768	3-03) Matrix: Water Sample	ed: 2022-01-	10 13:02, Continued				
Microbiological Pa	rameters						
Coliforms, Total		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
E. coli		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
Total Metals							
Aluminum, total		< 0.0050	OG < 0.1	0.0050	mg/L	2022-01-12	
Antimony, total		< 0.00020	MAC = 0.006	0.00020	mg/L	2022-01-12	
Arsenic, total		< 0.00050	MAC = 0.01	0.00050	mg/L	2022-01-12	
Barium, total		0.0139	MAC = 2	0.0050	mg/L	2022-01-12	
Boron, total		< 0.0500	MAC = 5	0.0500	mg/L	2022-01-12	
Cadmium, total		0.000028	MAC = 0.005	0.000010	mg/L	2022-01-12	
Calcium, total		73.0	None Required	0.20	mg/L	2022-01-12	
Chromium, total		< 0.00050	MAC = 0.05	0.00050	mg/L	2022-01-12	
Cobalt, total		< 0.00010	N/A	0.00010	mg/L	2022-01-12	
Copper, total		0.00402	MAC = 2	0.00040	mg/L	2022-01-12	
Iron, total		< 0.010	AO ≤ 0.3	0.010	mg/L	2022-01-12	
Lead, total		0.00027	MAC = 0.005	0.00020	mg/L	2022-01-12	
Magnesium, total		13.8	None Required	0.010	mg/L	2022-01-12	
Manganese, total		< 0.00020	MAC = 0.12	0.00020	mg/L	2022-01-12	
Mercury, total		< 0.000010	MAC = 0.001	0.000010	mg/L	2022-01-12	
Molybdenum, tota	ıl	0.00141	N/A	0.00010	mg/L	2022-01-12	
Nickel, total		0.00055	N/A	0.00040	mg/L	2022-01-12	
Potassium, total		1.86	N/A	0.10	mg/L	2022-01-12	
Selenium, total		0.00058	MAC = 0.05	0.00050	mg/L	2022-01-12	
Sodium, total		11.4	AO ≤ 200	0.10	mg/L	2022-01-12	
Strontium, total		0.304	MAC = 7	0.0010	mg/L	2022-01-12	
Uranium, total		0.00112	MAC = 0.02	0.000020	mg/L	2022-01-12	
Zinc, total		< 0.0040	AO ≤ 5	0.0040	mg/L	2022-01-12	

Hadden Outlet - Raw (22A0768-04) | Matrix: Water | Sampled: 2022-01-10 08:53

Microbiological Parameters				
Coliforms, Total (Q-Tray)	39	MAC = 0	1 MPN/100 mL	2022-01-10
E. coli (Q-Tray)	< 1	MAC = 0	1 MPN/100 mL	2022-01-10

Stevens Outlet - Raw (22A0768-05) | Matrix: Water | Sampled: 2022-01-10 09:21

Microbiological Parameters				
Coliforms, Total (Q-Tray)	35	MAC = 0	1 MPN/100 mL	2022-01-10
E. coli (Q-Tray)	< 1	MAC = 0	1 MPN/100 mL	2022-01-10

2921 Belgo Rd (22A0768-06) | Matrix: Water | Sampled: 2022-01-10 07:48

Microbiological Parameters

REPORTED TO PROJECT	Black Mountain Irrigation Drinking Water/ Bacteria				WORK ORDER REPORTED	22A0768 2022-01-1	7 13:31
Analyte		Result	Guideline	RL	Units	Analyzed	Qualifie
2921 Belgo Rd (2	2A0768-06) Matrix: Wate	er Sampled: 202	22-01-10 07:48, Cont	inued			
Microbiological Pa	rameters, Continued						
Coliforms, Total		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
E. coli		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
Kirschner Reserv	voir (22A0768-07) Matrix	: Water Sample	d: 2022-01-10 08:15				
Microbiological Pa	rameters						
Coliforms, Total		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
E. coli		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
Prospect Reserve	oir (22A0768-08) Matrix:	Water Sampled	l: 2022-01-10 11:09				
Microbiological Pa	rameters						
Coliforms, Total		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
				1	CFU/100 mL	2022-01-10	
	(22A0768-09) Matrix: Wa	< 1 ter Sampled: 20	MAC = 0	I		2022-01-10	
Pearson School ((22A0768-09) Matrix: Wa				mg/L	2022-01-11	
Pearson School (Anions	(22A0768-09) Matrix: Wa	ter Sampled: 20	022-01-10 11:40	0.10			
Pearson School (Anions Chloride	(22A0768-09) Matrix: Wa	ter Sampled: 20 8.39	022-01-10 11:40 AO ≤ 250	0.10	mg/L mg/L	2022-01-11	
Pearson School (Anions Chloride Fluoride	(22A0768-09) Matrix: Wa	ter Sampled: 20 8.39 < 0.10	AO ≤ 250 MAC = 1.5	0.10	mg/L mg/L mg/L	2022-01-11 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N)	(22A0768-09) Matrix: Wa	ter Sampled: 20 8.39 < 0.10 0.023	AO ≤ 250 MAC = 1.5 MAC = 10	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate		ter Sampled: 20 8.39 < 0.10 0.023 < 0.010	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	ters	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame	ters	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a	eters as CaCO3)	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required	0.10 0.10 0.010 1.0 0.500 -5.0	mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso	eters as CaCO3)	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required N/A	0.10 0.10 0.010 1.0 0.500 -5.0	mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A 2022-01-17	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso	eters as CaCO3) plved	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required N/A	0.10 0.10 0.010 1.0 0.500 -5.0 1.00	mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A 2022-01-17	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as	eters as CaCO3) plved	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5 67.8	$AO \le 250$ $MAC = 1.5$ $MAC = 10$ $MAC = 1$ $AO \le 500$ None Required N/A $AO \le 500$	0.10 0.010 0.010 1.0 0.500 -5.0 1.00	mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A 2022-01-17 N/A	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as	eters as CaCO3) blved rs s CaCO3) bhthalein (as CaCO3)	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5 67.8 45.9	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required N/A AO ≤ 500	0.10 0.10 0.010 1.0 0.500 -5.0 1.00 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A 2022-01-17 N/A 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Phenolp	eters as CaCO3) blved 's s CaCO3) bhthalein (as CaCO3) nate (as CaCO3)	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5 67.8 45.9 < 1.0	$AO \le 250$ $MAC = 1.5$ $MAC = 10$ $MAC = 1$ $AO \le 500$ None Required N/A $AO \le 500$ N/A $AO \le 500$	0.10 0.10 0.010 1.0 0.500 -5.0 1.00 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-17 N/A 2022-01-17 2022-01-11 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Bicarbo	eters as CaCO3) blved 's s CaCO3) bhthalein (as CaCO3) nate (as CaCO3) ate (as CaCO3)	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5 67.8 45.9 < 1.0 45.9	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required N/A AO ≤ 500	0.10 0.010 0.010 1.0 -5.0 1.00 1.0 1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-17 N/A 2022-01-17 2022-01-11 2022-01-11	
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameter Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Bicarbon Alkalinity, Carbona	eters as CaCO3) blved 's s CaCO3) bhthalein (as CaCO3) nate (as CaCO3) ate (as CaCO3)	ter Sampled: 20	$AO \le 250$ MAC = 1.5 MAC = 10 MAC = 1 AO \le 500 None Required N/A AO \le 500 N/A	0.10 0.010 0.010 1.0 0.500 -5.0 1.00 1.0 1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-17 N/A 2022-01-17 2022-01-11 2022-01-11 2022-01-11	HT1
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Paramet Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbon Alkalinity, Hydroxia	eters as CaCO3) Dived rs s CaCO3) Dithalein (as CaCO3) nate (as CaCO3) ate (as CaCO3) de (as CaCO3)	ter Sampled: 20	$AO \le 250$ $MAC = 1.5$ $MAC = 10$ $MAC = 1$ $AO \le 500$ None Required N/A $AO \le 500$ N/A $AO \le N/A$ N/A	0.10 0.010 0.010 1.0 0.500 -5.0 1.00 1.0 1.0 1.0 1.0 1.0 5.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-17 N/A 2022-01-17 2022-01-11 2022-01-11 2022-01-11 2022-01-11	HT1
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbon Alkalinity, Hydroxid Colour, True	eters as CaCO3) Dived rs s CaCO3) Dithalein (as CaCO3) nate (as CaCO3) ate (as CaCO3) de (as CaCO3)	ter Sampled: 20 8.39 < 0.10	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required N/A AO ≤ 500 N/A	0.10 0.10 0.010 1.0 1.0 -5.0 1.00 1.0 1.0 1.0 1.0 1.0 5.0 2.0 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A 2022-01-17 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-14	HT1
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbon Alkalinity, Hydroxid Colour, True Conductivity (EC)	eters as CaCO3) Dived rs s CaCO3) Dithalein (as CaCO3) nate (as CaCO3) ate (as CaCO3) de (as CaCO3)	ter Sampled: 20 8.39 < 0.10 0.023 < 0.010 6.9 54.7 -1.5 67.8 45.9 < 1.0 45.9 < 1.0 45.9 < 1.0 < 5.0 126	D22-01-10 11:40 $AO \le 250$ MAC = 1.5 MAC = 10 MAC = 1 $AO \le 500$ None Required N/A $AO \le 500$ N/A N	0.10 0.10 0.010 1.0 1.0 -5.0 1.00 1.0 1.0 1.0 1.0 1.0 5.0 2.0 0.0020	mg/L pS/cm mg/L pH units	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 N/A 2022-01-17 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-14 2022-01-14	HT1
Pearson School (Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parame Hardness, Total (a Langelier Index Solids, Total Disso General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbon Alkalinity, Carbona Alkalinity, Hydroxia Colour, True Conductivity (EC) Cyanide, Total	eters as CaCO3) blved s s CaCO3) bhthalein (as CaCO3) nate (as CaCO3) ate (as CaCO3) de (as CaCO3)	ter Sampled: 20	AO ≤ 250 MAC = 1.5 MAC = 10 MAC = 1 AO ≤ 500 None Required N/A AO ≤ 500 N/A MAC = 0.2	0.10 0.010 0.010 1.0 -5.0 1.00 1.0 1.0 1.0 1.0 1.0 1.0 2.0 0.0020 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-17 2022-01-11 2022-01-11 2022-01-11 2022-01-11 2022-01-14 2022-01-14 2022-01-12	

Microbiological Parameters

REPORTED TO PROJECT	Black Mountain Irrigation Drinking Water/ Bacteria	District			WORK ORDER REPORTED	22A0768 2022-01-1	7 13:31
Analyte		Result	Guideline	RL	Units	Analyzed	Qualifie
Pearson School ((22A0768-09) Matrix: Wate	er Sampled: 2	2022-01-10 11:40, Co	ontinued			
Microbiological Pa	rameters, Continued						
Coliforms, Total		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
E. coli		< 1	MAC = 0	1	CFU/100 mL	2022-01-10	
Total Metals							
Aluminum, total		0.0729	OG < 0.1	0.0050	mg/L	2022-01-12	
Antimony, total		< 0.00020	MAC = 0.006	0.00020	mg/L	2022-01-12	
Arsenic, total		< 0.00050	MAC = 0.01	0.00050	mg/L	2022-01-12	
Barium, total		0.0099	MAC = 2	0.0050	mg/L	2022-01-12	
Boron, total		< 0.0500	MAC = 5	0.0500	mg/L	2022-01-12	
Cadmium, total		< 0.000010	MAC = 0.005	0.000010	mg/L	2022-01-12	
Calcium, total		15.9	None Required	0.20	mg/L	2022-01-12	
Chromium, total		< 0.00050	MAC = 0.05	0.00050	mg/L	2022-01-12	
Cobalt, total		< 0.00010	N/A	0.00010	mg/L	2022-01-12	
Copper, total		0.00235	MAC = 2	0.00040	mg/L	2022-01-12	
Iron, total		0.037	AO ≤ 0.3	0.010	mg/L	2022-01-12	
Lead, total		< 0.00020	MAC = 0.005	0.00020	mg/L	2022-01-12	
Magnesium, total		3.60	None Required	0.010	mg/L	2022-01-12	
Manganese, total		0.00355	MAC = 0.12	0.00020	mg/L	2022-01-12	
Mercury, total		< 0.000010	MAC = 0.001	0.000010	mg/L	2022-01-12	
Molybdenum, tota	l	0.00076	N/A	0.00010	mg/L	2022-01-12	
Nickel, total		0.00041	N/A	0.00040	mg/L	2022-01-12	
Potassium, total		0.74	N/A	0.10	mg/L	2022-01-12	
Selenium, total		< 0.00050	MAC = 0.05	0.00050	mg/L	2022-01-12	
Sodium, total		4.11	AO ≤ 200	0.10	mg/L	2022-01-12	
Strontium, total		0.0807	MAC = 7	0.0010	mg/L	2022-01-12	
Uranium, total		0.000200	MAC = 0.02	0.000020	mg/L	2022-01-12	
Zinc, total		< 0.0040	AO ≤ 5	0.0040	ma/L	2022-01-12	

WTP Intake - Raw (22A0768-10) | Matrix: Water | Sampled: 2022-01-10 09:33

Microbiological Parameters					
Coliforms, Total (Q-Tray)	27	MAC = 0	1 MPN/100 mL	2022-01-10	
E. coli (Q-Tray)	< 1	MAC = 0	1 MPN/100 mL	2022-01-10	

 Sample Qualifiers:

 HT1
 The sample was prepared and/or analyzed past the recommended holding time.

 HT2
 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TOBlack Mountain Irrigation District**PROJECT**Drinking Water/ Bacteria

WORK ORDER 22 REPORTED 20

22A0768 2022-01-17 13:31

Analysis Description	Method Ref.	Technique	Accredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	\checkmark	Kelowna
Coliforms, Total in Water	SM 9222* (2017)	Membrane Filtration / Chromocult Agar	\checkmark	Kelowna
Colour, True in Water	SM 2120 C (2017)	Spectrophotometry (456 nm)	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	\checkmark	Kelowna
Cyanide, SAD in Water	ASTM D7511-12	Flow Injection with In-Line UV Digestion and Amperomet	ry ✓	Kelowna
E. coli in Water	SM 9222* (2017)	Membrane Filtration / Chromocult Agar	✓	Kelowna
Hardness in Water	SM 2340 B* (2017)	Calculation: 2.497 [total Ca] + 4.118 [total Mg] (Est)	\checkmark	N/A
Langelier Index in Water	SM 2330 B (2017)	Calculation		N/A
Mercury, total in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna
Solids, Total Dissolved in Water	SM 1030 E (2017)	SM 1030 E (2011)		N/A
Total Metals in Water	EPA 200.2 / EPA 6020B	HNO3+HCI Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	√	Richmond
Transmittance at 254 nm in Water	SM 5910 B* (2017)	Ultraviolet Absorption	√	Kelowna
Turbidity in Water	SM 2130 B (2017)	Nephelometry	✓	Kelowna

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

•	
RL	Reporting Limit (default)
% T	Percent Transmittance
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
°C	Degrees Celcius
AO	Aesthetic Objective
CFU/100 mL	Colony Forming Units per 100 millilitres
CU	Colour Units (referenced against a platinum cobalt standard)
MAC	Maximum Acceptable Concentration (health based)
mg/L	Milligrams per litre
MPN/100 mL	Most Probable Number per 100 millilitres
NTU	Nephelometric Turbidity Units
OG	Operational Guideline (treated water)
pH units	pH < 7 = acidic, ph > 7 = basic
µS/cm	Microsiemens per centimetre
ASTM	ASTM International Test Methods
EPA	United States Environmental Protection Agency Test Methods
SM	Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO	Black Mountain Irrigation District
PROJECT	Drinking Water/ Bacteria

WORK ORDER 22 REPORTED 20

22A0768 2022-01-17 13:31

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing. The quality control (QC) data is available upon request

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:bwhitehead@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.